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Abstract—The novel complex trans-[PdCl2(g
1-N-2-ethyl-2-oxazoline)2] is shown to be an active and oxidatively robust catalyst for

C–C bond-forming reactions (Heck, Sonogashira, Ullman, Suzuki), which can be carried out in air without rigorous solvent/sub-
strate purification and in the absence of additional free ligand.
� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Several early and late transition metal (TM) complexes
are known to mediate C–C bond formation, but in recent
years Pd compounds (formed either prior to reactivity or
in situ) have demonstrated significant versatility in this
area.1–3 A wide variety organic transformations are facil-
itated by complexes that incorporate a number of diverse
ligand classes (for example, P, N, O, S, etc. as donor
atoms) combined with Pd.4 One of the few drawbacks
in the application of most Pd derivatives is the air-sensi-
tive nature of the active species/intermediates (presuma-
bly Pd(0) complexes) and/or oxidation potential of the
ligands during catalysis. Hence, inert atmosphere condi-
tions are often necessary for efficient catalysis; this aspect
remains a serious impediment to large-scale industrial use
of Pd-mediated technology.2,3 In addition, quantities of
�free� ligand are also often necessary to stabilise Pd during
catalysis, a situation that may make product purification
more difficult. Therefore, there is still a need for new and
oxidatively robust Pd-based systems for applications in
synthetic organic chemistry.
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2. Results and discussion

Our research interests include fundamental and applied
studies of oxazoline (ox) ligands5 and the TM complexes
derived from them.6 The general area of coordination
chemistry of monodentate ox ligands, specifically with
Pd, is an under-explored area of research;5 thus justify-
ing our present examination. The treatment of a solu-
tion of 2-ethyl-2-oxazoline, a cheap and commercially
available polymer precursor,7 with methanolic Li2PdCl4
Figure 1.
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Table 1. Catalysis results using complex 1 as mediator of C–C bond formation

Entry Aryl–X Substrate Product Time (h) % Yield TONa

1b PhI Styrene t-Stilbene 48 87 8.6 · 102

2b PhI Styrene t-Stilbene 24 84 1.7 · 103

3b PhI Styrene t-Stibene 18 77 2.0 · 103

4b,c PhI Styrene t-Stilbene 18 71 1.9 · 102

5b p-NO2PhI Styrene t-b-NO2-styrene 24 100 >2.0 · 103

6b PhBr Styrene t-Stilbene 24 77 1.5 · 103

7b p-Br-anisole Styrene t-Stilbene 24 65 1.3 · 103

8d PhBr PhB(OH)2 Biphenyl 3 100 >1.3 · 103

9d p-Br-anisole PhB(OH)2 p-Ph-anisole 3 100 >1.3 · 103

10e PhI PhI Biphenyl 3 45 1.1 · 101

11f PhI PhC„CH PhCCPh 3 32 1.9 · 102

a All yields refer to yields of pure (1H NMR, mp, IR) products isolated by extraction and flash column chromatography; TON = turn over number

per hour.
b Conditions: 0.00053mmol 1, 25mmol aryl-halide, 30mmol styrene, 25mL DMF, 30mmol sodium acetate, 140–150 �C; t-stilbene = trans-stilbene;

t-b-NO2-styrene = trans-b-(4-nitrophenyl)styrene.
c 0.0053mmol of 1 used.
d Conditions: 0.00053mmol 1, 10 mL toluene, 2mmol aryl-halide, 3mmol PhB(OH)2, 4mmol K2CO3, 110�C.
e Conditions: 0.014mmol 1, 5mL DMF, 2mmol PhI, 1mmol 1,4-dihydroquinone, 2mmol K2CO3, 110�C.
f Conditions: 0.0011mmol 1, 2mL pyrollidine, 2mmol PhI, 1mmol CuI, 2.4mmol Ph–C„CH, 90�C.
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gives an air stable complex analysing for [PdCl2(2-ethyl-
2-ox)2] (1) in good yield.8 Proton NMR spectroscopy
indicates a single ox ligand environment. Single crystal
X-ray diffraction of a recrystallised sample of 1 revealed
(Fig. 1)9 a mononuclear (formally) Pd(II) complex with
trans stereochemistry of ox ligands bound via the
N-atom in an g1 fashion, as expected.5,10 Structurally
characterised analogues of 1 are rare but include
trans-[PdCl2(g

1-N-2-phenyl-2-ox)2] (2)11 and a related
naphthalene complex described by van Koten et al.,
trans-[PdCl2(g1-N-4,4-dimethyl-2-(2 0-napthyl)-2-ox)2]
(3).12 The latter species appears to exist as a mixture of
cis/trans isomers in solution, in contrast to our NMR
observations with 1 (and earlier studies of 2).11 The
bond lengths and angles11,12 of the solid-state forms of
both 2 and 3 are similar in most respects to that of 1.9

We have further investigated (Table 1) the use of solu-
tions of 1, in open air, as a mediator of C–C bond for-
mation under typical Heck (entries 1–7), Suzuki (entries
8–9), Ullmann (entry 10) and Sonogashira (entry 11)
reaction conditions without addition of free ligand nor
rigorous exclusion of moisture or air.13 Complex 1 is an
effective catalyst for all of these classes of C–C bond-
forming reactions. Yields range from 32% to 100%
under standard conditions and TON�s are moderate
(Table 1);1–4,13,14 all solvents and reagents that were
used were of reagent grade and not purified further.15

There are few fully characterised (pre-formed) Pd-based
systems that have been shown to be effective for a pleth-
ora of different C–C bond-forming processes and even
fewer can operate in air and without additional lig-
and.2–4,14 This system effectively combines these two as-
pects with the further advantage of using a simple, very
inexpensive (or readily synthesised on a large scale7) lig-
and (cf. bulky phosphines, carbenes), which is stable to
oxidative decomposition and low in molecular weight.
The robust nature of 1, presumably combined with the
stability of the Pd intermediates during catalysis in open
air, makes this a very attractive system for C–C coupling
reactions.
In conclusion, a new Pd complex has been synthesised
and fully characterised and found to be an effective cat-
alyst, in air, for a number of C–C bond-forming reac-
tions. We are currently expanding this chemistry to
include enantioselective substrate activation; the investi-
gation of the mechanism of reactions mediated by 1 and
its (chiral) analogues will be disclosed in a future
publication.
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720.84(14)Å3; Z = 2; density (calcd): 1.730Mg/m3.
Absorption coefficient: 1.650mm�1; F(000): 376. Crystal
size: 0.25 · 0.25 · 0.3mm3. Theta range for data collec-
tion: 2.99� to 24.99�. Index ranges: �10 6 h 6 10,
�9 6 k 6 6, �10 6 l 6 11. Reflections collected: 3707;
independent reflections: 1272 [R(int) = 0.0157]. Complete-
ness to theta = 24.99�: 99.9%. Absorption correction:
none. Refinement method: Full-matrix least-squares on
F2. Data/restraints/parameters: 1272/0/80; Goodness-of-fit
on F2: 1.084. Final R indices [I > 2sigma(I)]: R1 = 0.0161,
wR2 = 0.0442; R indices (all data): R1 = 0.0173,
wR2 = 0.0446. Extinction coefficient: 0.0478(17); largest
diff. peak and hole: 0.250 and �0.306eÅ�3.
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